[CONTRIBUTION FROM THE CHEMISTRY DEPARTMENT, DREXEL INSTITUTE OF TECHNOLOGY]

"CONVERSION SERIES" FOR TRIETHYLTIN DERIVATIVES USING SILVER SALTS

HERBERT H. ANDERSON¹ AND JOSEPH A. VASTA

Received February 3, 1954

Before the present research there has been no systematic investigation of organotin esters, halides, halogenoids, oxides and sulfides to demonstrate the conversion of one compound into another.

This paper offers a complete "conversion series" for triethyltin derivatives using dry silver salts with or without an inert solvent such as benzene, carbon tetrachloride, toluene, or xylene. In the "conversion series", Et₃SnSCH₃ and (Et₃Sn)₂S \rightarrow Et₃SnI \rightarrow Et₃SnBr \rightarrow Et₃Sn(CN) \rightarrow Et₃Sn(NCS) \rightarrow Et₃SnCl \rightarrow (Et₃Sn)₂O \rightarrow Et₃Sn(NCO) \rightarrow Et₃SnOCOCH₃ \rightarrow Et₃SnF heating with the appropriate silver salt converts a triethyltin compound into any other triethyltin compound to the right of it in the series. Reactions proceed only slightly to the left, if at all. Silver iodide converts (Et₃Sn)₂S into Et₃SnI; silver bromide converts anhydrous Et₃SnSCH₃, (Et₃Sn)₂S, and Et₃SnI all into Et₃SnBr; silver cyanide changes Et₃SnSCH₃, (Et₃Sn)₂S, Et₄SnI, and Et₃SnBr all into Et₃Sn(CN). No other atom or radical in this "conversion series" can displace the fluorine atom in Et₃SnF. We may also write the "conversion series" as SCH₃ and S \rightarrow I \rightarrow Br \rightarrow CN \rightarrow NCS \rightarrow Cl \rightarrow O \rightarrow NCO \rightarrow OCOCH₃ \rightarrow F in considering ester groups, halide, halogenoid, oxygen, sulfur (sulfide), and methylmercaptide group only.

Several publications nearly a century ago demonstrated the use of silver salts in changing Et₃SnI into Et₃Sn(CN) (1), Et₃SnI into unanalyzed Et₃Sn(NCS) (1), also Et₃SnCl into Et₃Sn(NCO) (1, 2)—but omitted boiling points and melting points. We have reexamined Et₃Sn(NCO), Et₃Sn(NCS), and Et₃Sn(CN), furnishing boiling points, melting points, and other information.

Our best center-fraction Et₃Sn(NCO) melted at 48°, boiled at 239° at 760 mm., 162–163° at 80 mm., or 120–121° at 11 mm.; made from Et₃SnBr and AgNCO, there was no bromine present in the Et₃Sn(NCO). Our center-fraction Et₃Sn(NCS), prepared from Et₃SnI and AgNCS, contained no iodine; the Et₃Sn(NCS) boiled at 130°/1 mm., or at 282° with much decomposition under 760 mm.; Et₃Sn(NCS) melts at 33°, but easily supercools to 20° without crystallization, furnishing (on supercooled liquid) d_4^{20} , 1.458 and n^{20} , 1.5825. Our best Et₃Sn(CN) melted at 153° and boiled at 249° under 760 mm., with formation of an infusible white solid. Et₃Sn(CN) must be sublimed at 8 mm. to avoid excessive decomposition; it hydrolyzes easily in moist air. Our center-fraction Et₃SnSCH₃, a new compound, prepared from (Et₃Sn)₂O and CH₃SH, boiled at 224°, had d_4^{20} 1.319 and n^{20} 1.5290.

As expected, $(Et_3Sn)_2O$ reacts with either anhydrous liquid hydrogen cyanide or a solution of isothiocyanic acid in diethyl ether to yield $Et_3Sn(CN)$ and

¹Kindly address communications to this author. Experiments by both authors.

 $Et_3Sn(NCS)$ respectively, but $(Et_3Sn)_2O$ does not react with anhydrous isocyanic acid to give $Et_3Sn(NCO)$. Perhaps HNCO polymerizes too rapidly into cyanuric acid, a trimer, for reaction with the organotin oxide.

Other researches undertaken in this department by one of us have centered around "conversion series" for organosilicon and organogermanium esters, halides, halogenoids, oxides, and sulfides (3). Eaborn (4) presents excellent evidence of a "conversion series" for organosilicon compounds not including esters.

It is beyond the present publication to explain the mechanism of the reactions with silver salts, or to compare numerous differences in the four individual series for silicon, gemanium, tin, or phosphorus.

The "conversion series" does not follow the solubility products of silver salts (using data for pure aqueous solutions); oxide and sulfide are usually not in the relative positions which solubility products could predict, assuming formation of the least soluble silver salt.

Specific examination of the reported "conversion series" for organotin derivatives shows that sulfide may be changed into any other atom or group in the series. This is the only instance yet of sulfide as the most replaceable in a series. Reactions using silver oxide are surprisingly difficultly performed, since the organotin derivatives often reduce silver oxide to the metal in the absence of a solvent.

In a number of combinations the forward reaction such as $Et_{\delta}SnBr + AgF \rightarrow Et_{\delta}SnF + AgBr$ was quantitative while the reverse reaction $Et_{\delta}SnF + AgBr \rightarrow Et_{\delta}SnBr + AgF$ went 2% to completion in the absence of a solvent. Perhaps the small bromine content of the $Et_{\delta}SnF$ sublimate was actually due to hydrogen bromide. We consider this small percentage without effect on the "conversion series". Reactions of $Et_{\delta}Sn(NCO)$ with the appropriate silver salt yielded 10% of the chloride, 8% of the thiocyanate, or 5% of the cyanide which a pure chloride, thiocyanate or cyanide would contain—while silver cyanate converted the organotin chloride, thiocyanate, and cyanide quantitatively into (iso) cyanate. We consider this slight contradiction to be due to the known decomposition of silver cyanate.

EXPERIMENTAL

I. "CONVERSION SERIES"

Reactions of Et_8SnSCH_3 . In each reaction 0.2 g. of Et_8SnSCH_3 and 0.4 g. of the silver salt were subjected to an hour of reflux, except for the reaction with silver fluoride which was instantaneous and violent, yielding Et_3SnF , and the reaction with Ag₂O, which was quite violent. Silver cyanate yielded $Et_3Sn(NCO)$ in 5 ml. of toluene; AgNCS in toluene yielded $Et_3Sn(NCS)$. In the absence of a solvent AgCl, AgCN, AgBr and AgI yielded $Et_3SnCl, Et_3Sn(CN), Et_3SnBr$, and Et_3SnI respectively, whereas reactions in toluene were quite slow in rate. Silver acetate and 1 g. of $Et_3SnS-iC_3H_7$ (5) yielded $Et_3SnOCOCH_3$, m.p. 121°, b.p. 217°, after ten minutes of reflux under 60 mm.

Reactions of $(Et_3Sn)_2S$. When not specified, 0.3 g. of $(Et_3Sn)_2S$ and 0.8 g. of the silver salt were used in an hour of reflux. Gentle warming with AgF produced cotton-like Et_3SnF easily. A 60-minute reflux of 0.20 g. of Ag₂O and 0.30 g. of $(Et_3Sn)_2S$ in 3 ml. of toluene gave a product about 96% $(Et_3Sn)_2O$ and 4% $(Et_3Sn)_2S$. One gram of $(Et_3Sn)_2S$ and 1.50 g. of AgOCOCH₃ after 15 minutes reflux at 50 mm. yielded 1.15 g. of $Et_3SnOCOCH_3$ (5), m.p. 120°, b.p. about 220°. Using AgNCO in 3 ml. of benzene, AgCl in 2 ml of CCl₄, AgNCS in 3 ml. of benzene, AgBr in 3 ml. of xylene, AgCN without a solvent, and AgI in 3 ml. of xylene we obtained the corresponding organotin derivatives free of sulfide content, after a 30-minute reflux.

Reactions of Et₃SnI. Et₃SnI and AgF (0.5 g. each) yielded Et₃SnF in 30-minutes reflux in 3 ml. of xylene. One g. of Ag₂O and 0.7 g. of Et₈SnI in 5 ml. of CCl₄ yielded pure (Et₈Sn)₂O, free from iodine, in ten-minutes reflux. One g. of AgOCOCH₃ and 0.8 g. of Et₃SnI in 5 ml. of CCl₄ yielded pure Et₃SnOCOCH₃ after ten-minutes reflux. One g. of AgNCO and 0.7 g. of Et₂SnI in 5 ml. of CCl₄ yielded iodine-free Et₂Sn(NCO) after ten-minutes reflux. Two g. of AgCl and 1.1 g. of Et_sSnI without a solvent yielded iodine-free Et_sSnCl, b.p. 209°, n³⁰ 1.504. Et₃SnI (20 g.) and 17 g. of AgNCS after two-hours reflux in 35 ml. of CCl₄ yielded a liquid of apparently low miscibility with CCl₄; the silver salt was washed with benzene and later with 100% ethanol. The ethanol fraction was kept apart from other material for study of properties of $Et_3Sn(NCS)$. Rather pure $Et_3Sn(NCS)$ resulted when the compound was distilled at 1 mm. and the center fraction was taken. One g. of AgCN and 0.8 g. of Et₃SnI in a reaction without solvent during 30-minutes reflux gave an iodine-free solid of m.p. roughly 100°, perhaps partially hydrolyzed. Two g. of AgBr and 1 g. of Et₃SnI in a 30minutes reflux without a solvent yielded iodide-free Et₃SnBr of n^{33} 1.521. Ten g. each of Ag₂S and Et₃SnI in two-hours reflux without a solvent yielded a liquid containing much iodine and boiling at about 225°-unchanged Et₃SnI.

Reactions of $Et_8 SnBr$. When 0.6 g. of $Et_8 SnBr$ and 0.8 g. of AgF in 4 ml. of xylene were refluxed 30 min., bromine-free $Et_8 SnF$ was obtained. One g. of Ag₂O and 0.7 g. of $Et_8 SnBr$ in 5 ml. of xylene after an hour of reflux yielded ($Et_8 Sn$)₂O containing only a trace of bromide. $Et_3 SnBr$ and AgOCOCH₃ (0.5 g. each) without a solvent yielded solid (long white needles) $Et_8 SnOCOCH_3$ after 15-minutes reflux. Forty-minutes reflux of 14 g. of $Et_8 SnBr$ and 11 g. of AgNCO in 30 ml. of benzene and 30 ml. of CCl₄ finally yielded bromine-free $Et_8 Sn(NCO)$, b.p. 239°/760 mm. and m.p. 48°; actual purification utilized distillation at 120-121°/11 mm. pressure. A four-hour reflux, without solvent, of 1.34 g. of $Et_8 SnBr$ and 2.20 g. of AgCl yielded organotin material of d_4^{20} 1.462, containing some bromine—approximately 10% $Et_8 SnBr$ at most; the main product was $Et_8 SnCl$. Ninety-minutes reflux of 2 g. of AgNCS and 2.80 g. of $Et_8 SnBr$ in 5 ml. of benzene finally yielded 1.63 g. of $Et_8 SnBr$ and AgCN yielded a sublimate of white needles, $Et_8 Sn(CN)$. When 3 g. of $Et_8 SnBr$ and AgCN yielded a sublimate of white needles, $Et_8 Sn(CN)$. When 3 g. of $Et_8 SnBr$ was given an hour of reflux, without solvent, with either Ag_8 or AgI, no test for sulfide and only a slight test for iodide resulted; the density of $Et_8 SnBr$ rose only 0.1% in the iodide treatment.

Reactions of $Et_8Sn(CN)$. Gentle warming of 0.3 g. of $Et_8Sn(CN)$ and 0.4 g. of AgF produced cotton-like, cyanide-free Et_8SnF . One-hour reflux of 0.3 g. each of Ag₂O and $Et_8Sn(CN)$ in 3 ml. of toluene gave a cyanide-free product evidently $(Et_3Sn)_2O$. One hour of reflux of 0.3 g. of $Et_8Sn(CN)$ and 0.6 g. of AgOCOCH₃ in 3 ml. of toluene gave a cyanide-free product, $Et_8SnOCOCH_3$. An hour reflux of 0.2 g. of $Et_8Sn(CN)$ and 0.50 g. of AgNCO in 3 ml. of toluene yielded a product shown to be all cyanate and no cyanide— $Et_8Sn(NCO)$. Ten-minutes free reflux of 0.50 g. of $Et_8Sn(CN)$ and 1.10 g. of AgCl, without a solvent, gave liquid Et_8SnCl , b.p. 207°, n^{23} 1.502. Ten-minutes reflux of 1 g. of $Et_8Sn(NCS)$ distilled at 130–135°/1 mm.; found n^{27} 1.541, also much thiocyanate present, although some decomposition occurred. Triethyltin cyanide did not react with Ag₂S, AgBr, or AgI under comparable conditions.

Reactions of $Et_3 Sn(NCS)$. Gentle warming of 0.4 g. each of $Et_3Sn(NCS)$ and AgF yielded cotton-like Et_3SnF . Using CCl₄ as solvent, an hour reflux of 0.3 g. each of Ag₂O and $Et_3Sn(NCS)$ yielded (Et_3Sn_2O containing very little thiocyanate. Similarly, AgOCOCH₃ furnished $Et_3SnOCOCH_3$, free of thiocyanate content; AgNCO furnished $Et_3Sn(NCO)$, free of thiocyanate content. A gram of $Et_3Sn(NCS)$ and 2.20 g. of AgCl in 5 ml. of xylene after one hour of reflux gave material 98% $Et_3Sn(NCS)$. However, $Et_3Sn(NCS)$. failed to react with AgCN, with AgBr (3 hours reflux of 2 g. of each in 5 ml. of benzene), AgI, or Ag_2S .

Reactions of $Et_3 SnCl$. Gentle warming of $Et_3 SnCl$ and AgF furnished cotton-like $Et_3 SnF$. One-hour reflux of 2 g. of Ag₂O and 0.9 g. of $Et_3 SnCl$ in 4 ml. of xylene furnished a solution of $(Et_3 Sn)_2O$ containing no chloride. One g. of $Et_3 SnCl$ and 1.2 g. of AgOCOCH₃ without a solvent yielded white solid $Et_3 SnOCOCH_3$, chloride-free, after 15-minutes reflux. Similarly, $Et_3 SnCl$ and AgNCO yielded chloride-free $Et_3 Sn(NCO)$. Triethyltin chloride, usually 1.5 g., and an equal weight of AgNCS, AgCN, AgBr, AgI, and Ag₂S did not react under similar conditions.

Reactions of $(Et_3Sn)_2O$. Gentle warming of $(Et_3Sn)_2O$ and AgF in a small test tube produced cotton-like Et_3SnF . Exactly 1 g. of $(Et_3Sn_2)O$ and 2 g. of AgOCOCH₃, upon an hour of gentle reflux in CCl₄, ultimately furnished white solid $Et_3SnOCOCH_3$, m.p. 108° and b.p. 220°. Reflux of 0.6 g. of $(Et_3Sn)_2O$ and 1.1 g. of AgNCO in 4 ml. of xylene for 15 minutes, gave a black silver salt and a solution containing $Et_3Sn(NCO)$; treated with 80% ethanolic AgNO₃, white AgNCO precipitated, but was soluble in dilute nitric acid. Reflux of $(Et_3Sn)_2O$ and AgCl without a solvent gave a liquid boiling at 230°, predominately Et_3SnCl , formed when Ag₂O decomposed. However, $(Et_3Sn)_2O$ and AgCl did not react during an hour of reflux in xylene, nor did $(Et_3Sn)_2O$ and AgCN react. Two g. of $(Et_3Sn)_2O$ and 4 g. of AgNCS in one hour of free reflux without a solvent yielded a product containing very little $Et_3Sn(NCS)$. Likewise, $(Et_3Sn)_2O$ reacted not at all with AgI or Ag₂S and only 4% with AgBr.

Reactions of $Et_s Sn(NCO)$. Gentle warming of 0.4 g. each of $Et_s Sn(NCO)$ and AgF produced cotton-like $Et_s SnF$. Fifty-minutes reflux in 4 ml. of CCl₄ gave mainly no reaction with 0.22 g. of Ag₂O and 0.35 g. of $Et_s Sn(NCO)$, since the precipitate obtained with 80% ethanolic AgNO₃ solution was pure white. However, about 10% of the precipitated silver salt was insoluble in concentrated nitric acid—evidently, cyanide formed by overheating the $Et_s Sn(NCO)$. Similarly, $Et_s Sn(NCO)$ and AgOCOCH₃ furnished nearly pure $Et_s SnOCOCH_3$, which contained very little isocyanate according to a test with concentrated sulfuric acid, then sodium hydroxide and Nessler's reagent. A one-hour reflux of 1 g. of $Et_s Sn(NCO)$ and 2 g. of AgCl gave a product with about 10% of the chloride content which pure $Et_s SnCI$ has; perhaps the known decomposition of AgNCO accounts for this. Heating 0.6 g. of $Et_s Sn(NCO)$ and a three-fold weight of AgNCS in 5 ml. of xylene for 90 minutes yielded a product with 4% of the thiocyanate which pure $Et_s Sn(NCO)$ has. Heating equal weights of $Et_s Sn(NCO)$ and AgCN gave a product with 5% of the cyanide which $Et_s Sn(CN)$ has; the decomposition of AgNCO seems responsible. However, $Et_s Sn(NCO)$ did not react with AgBr, AgI, or Ag₂S.

Reactions of $Et_3SnOCOCH_3$. Gentle warming of 0.2 g. each of $Et_3SnOCOCH_3$ and AgF without a solvent easily produced cotton-like Et_3SnF in a small test tube; no acetate was present in the Et_3SnF . Silver oxide and $Et_3SnOCOCH_3$ without a solvent gave a rapid evolution of gases; in CCl₄ there was no reaction in a 30-minute reflux. According to a Nessler test for nitrogen, $Et_3SnOCOCH_3$ and AgNCO did not react. Likewise, $Et_3SnOCOCH_3$ reacted either not at all or 1% with AgCl, AgNCS, AgCN, AgBr, AgI, and Ag₂S.

Reactions of Et_3SnF . Neglecting a 2% reaction with AgBr, Et_3SnF did not react with anything except AgOCOCH₃; Et_3SnF reacted with AgOCOCH₃ in the absence of a solvent, but not in benzene solution. Probably the decomposition of AgOCOCH₃ was responsible.

II. PREPARATION OF STARTING MATERIALS

Bis(triethyltin) oxide, $(Et_sSn)_2O$, was prepared either by reaction of SnCl₄ and a deficiency of EtMgBr (5)—or from Et₄Sn and iodine, followed by treatment with aqueous sodium hydroxide. This key material boils at 272/760 mm., or at approximately 100°/1 mm. Reaction of $(Et_sSn)_2O$ with hydrofluoric acid gave Et₈SnF; with acetic acid gave Et₈SnBr. OCOCH₂ (1, 5); with hydrochloric, hydrobromic, and hydriodic acid gave Et₈SnCl, Et₈SnBr. and Et_sSnI respectively. Reaction of $(Et_sSn)_2O$ and hydrogen sulfide gave $(Et_sSn)_2S$ (5), and with CH_sSH gave Et_sSnSCH_s , a new compound.

An excess of gaseous CH₃SH bubbling through 10 g. of $(Et_3Sn)_2O$, followed by drying with Na₂SO₄, separation of the liquid by pipetting, and then distillation yielded pure Et₃SnSMe, of d_4^{20} 1.319, n^{20} 1.529, b.p. 224°.

Anal. for SCH₃; Found, 18.8, 18.9, 18.8. Calc'd, 18.6.

Described among the reactions of Et_3SnBr , the reaction with AgNCO yielded $Et_3Sn(NCO)$, m.p. 48°, but often supercooling, and b.p. 239°/760 mm.; 162–163°/80 mm.; or 120–121°/11 mm. There was no bromine present in the small crystals of $Et_3Sn(NCO)$.

Described among the reactions of Et_3SnI , the reaction with AgNCS yielded pure $Et_3Sn(NCS)$, m.p. 33°, but supercooling to 20° easily; b.p. 130°/1 mm. or 282°/760 mm. with severe decomposition. On the supercooled liquid $Et_3Sn(NCS)$ had d_4^{20} 1.458, n^{20} 1.5825.

Anal. Calc'd: M. W., 264.0; Neut. equiv., 264.

Found: M. W. (in camphor), 267; Neut. equiv. (to AgNO₃ with ferric ion), 272, 269. Condensing excess liquid anhydrous hydrogen cyanide in a solution of 10 g. of (Et₃Sn)₂O in 30 ml. of CCl₄ at 0°, after drying with Na₂SO₄ and distillation of solvent, yielded Et₃Sn-(CN). This Et₃Sn(CN) had m.p. 153°, b.p. 249° with severe decomposition; the sample was sublimed at 8 mm.

III. REACTIONS OF (ET3SN)20 WITH ACIDS

Thiocyanic acid. Exactly 1 g. of $(Et_3Sn)_2O$ and 2.5 ml. of 2.23 *M* HNCS in diethyl ether stood four hours over Na₂SO₄. Distillation of the solvent, after pipetting, was followed by distillation of $Et_3Sn(NCS)$ at 180° under 9 mm. The m.p. was above 20°, n^{20} was 1.580, with a yield of 0.85 g. or 70%.

Isocyanic acid and sulfur dioxide. Both of these were passed separately into $(Et_sSn)_2C$ in the absence of a solvent. No reactions occurred.

Hydrogen cyanide. This successful reaction is described in the previous section.

IV. RELATED INVESTIGATIONS IN PROGRESS

A "conversion series" for organosilicon compounds including esters is complete (6), while another "conversion series" for organogermanium compounds including esters is nearly complete.

Information assembled at this institute shows that Cahours' boiling point of $Et_8Sn-OCOCH_3$, 230° (1) is approximately 6° too high, while the melting point is very nearly 121°.

SUMMARY

1. Using dry silver salts with or without an inert solvent such as benzene, carbon tetrachloride, toluene, or xylene, the "conversion series" for triethyltin esters, halides, halogenoids, oxide, and sulfide is Et_3SnSCH_3 and $(Et_3Sn)_2S \rightarrow Et_3SnI \rightarrow Et_3SnBr \rightarrow Et_3Sn(CN) \rightarrow Et_3Sn(NCS) \rightarrow Et_3SnCl \rightarrow (Et_3Sn)_2O \rightarrow Et_3Sn(NCO) \rightarrow Et_3SnOCOCH_3 \rightarrow Et_3SnF$ respectively. Heating with the appropriate silver salt converts a triethyltin compound into any triethyltin compound to the right of it in this series. Reactions proceed only very slightly, if at all, to the left. Organotin derivatives like these often react quite vigorously with silver oxide to yield silver metal.

2. Bis(triethyltin) oxide reacts easily with anhydrous liquid hydrogen cyanide or with ethereal thiocyanic acid furnishing $Et_3Sn(CN)$ and $Et_3Sn(NCS)$ respectively, but does not react with isocyanic acid. New physical data are presented for some compounds: $Et_3Sn(CN)$ has m.p. 153° and b.p. 249°; $Et_3Sn(NCO)$ has m.p. 48° and b.p. 239°; $Et_3Sn(NCS)$ has m.p. 33° and b.p. 282°; and the new compound $Et_{s}SnSMe$ has b.p. 224°. These halogenoid formulas carry no structural implication.

PHILADELPHIA 4, PENNA.

REFERENCES

- (1) CAHOURS, Ann., 122, 50 (1862).
- (2) KULMIZ, J. prakt. Chem., 80, 91 (1860).
- (3) ANDERSON, J. Amer. Chem. Soc., 73, 5440 (1951).
- (4) EABORN, J. Chem. Soc., 3077 (1950).
- (5) SASIN, J. Org. Chem., 18, 1142 (1953).
- (6) ANDERSON AND FISCHER, J. Org. Chem., 19, preceding paper (1954),